M1.(a) (i)

(ii)

1

1

1

Allow – $NH_{3^{+}}$ and $^{+}NH_{3^{-}}$

(b) (i) Condensation Allow polyester

> (ii) <u>propane-1,3-diol</u> *Must have e Allow 1,3-propan<u>e</u>diol*

(c) (i) Addition Not additional

(ii)

OR

1 for each structure within each pair

(d) c

If wrong,
$$CE = 0$$

1

1

1

1

1

M2.(a) (i)

(ii) NOTE - Two marks for this clip
M1 for alanine section bonded through N
M2 for alanine section bonded through C
But penalise error in proline ring

Allow MAX 1 for correct tripeptide in polymer structure

- (b) (i) <u>3-methylpent-2-ene</u> Ignore E-Z, commas, spaces or missing hyphens
 - (ii) <u>4-amino-3-methylbutanoic acid</u> Ignore commas, spaces or missing hyphens

1

1

1

(iii)

1

 (iv) Non polar OR no polar groups / bonds (for attack by water / acids / alkalis / nucleophiles or for hydrolysis)

C-C bonds are strong

M3. (a) 3-hydroxypropanoic acid allow 3-hydroxypropionic acid must be correct spelling

(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

1

1

1

1

[7]

1

1

1

allow polyalkene conseq on their c(ii) ignore n

(d)

1

In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two carboxylate groups Allow COONa or COO- Na⁺ but not covalent bond to Na allow NH₂-

1

```
(ii)
```


$$H_3^+$$
 H_3^+ $H_3^ H_2^ H_2^ H_2^ H_2^ H_2^ H_3^ H_3^$

NB two ester groups

allow NH₂- or ⁺NH₃-

2		
1		
I		

In 4(e), do not penalise a slip in the number of carbons in the $-CH_2CH_2$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

[13]

1

(b)

1

1

1

(e)

[5]

1

M5.(a)

(c)

(b)

(d)

[4]

1

1

1

M6.(a) <u>2,6-diaminohexanoic acid</u>

Ignore additional , or – or spaces.

1

(b) (i)

NB both N must be protonated. Allow $-NH_3^+$ allow CO_2H Allow $-^+H_3N$. Penalise $-C_4H_8$ – here.

 $H_{2}N(CH_{2})_{4} - C - COO - OO - OO - OOO -$

1

1

(iii) H H₂N(CH₂)₄-CCOOCH₃ NH₂ Allow CO₂CH₃. Allow $-NH_3^+$ or $-H_2N$.

1

(ii)

 $\begin{bmatrix} CH_{3} \\ H-C-COOH \\ NH_{2} \end{bmatrix}^{+\bullet} \xrightarrow{H-C-H} H-C+ + COOH \\ H-C+ + C+ + COOH \\ H H (1) \\ H H (1)$

for <u>displayed formula</u> of fragment ion.
for molecular ion of alanine AND radical.
Allow molecular ion without brackets and fragment ion in brackets with outside +.
Allow dot anywhere on radical.
Allow [C₃H₇NO₂]+* for molecular ion.

OR

OR

Dipeptide, not repeating unit /. Allow CO₂H Allow –H₂N. Allow –CONH–.

(e) M1 In acid lysine has double positive or more positive charge

M2 (Lysine ion) has greater affinity / greater attraction / adheres better / sticks better to polar / stationary phase M2 only scores after a correct M1. Ignore greater retention time.

[9]

1

1

1

M7.(a) Wear plastic gloves:

Essential - to prevent contamination from the hands to the plate

Add developing solvent to a depth of not more than 1 cm³:

Essential - if the solvent is too deep it will dissolve the mixture from the plate

1

	Allow the solvent to rise up the plate to the top:		
	Not essential – the $R_{\rm f}$ value can be calculated if the solvent front does not reach the top of the plate	1	
	Allow the plate to dry in a fume cupboard:		
	Essential – the solvent is toxic <i>Allow hazardous</i>	1	
(b)	Spray with developing agent or use UV	1	
	Measure distances from initial pencil line to the spots (<i>x</i>)	1	
	Measure distance from initial pencil line to solvent front line (y)	1	
	R_r value = x / y	1	
(c)	Amino acids have different polarities	1	
	Therefore, have different retention on the stationary phase or different solubility in the developing solvent	1	[10]